Variability Studies of Two Prunus-Infecting Fabaviruses with the Aid of High-Throughput Sequencing

Rate this item
(0 votes)

Igor Koloniuk; Tatiana Sarkisova; Karel Petrzik; Ondrej Lenz; Jaroslava Pribylová; Jana Fránová; Josef Špak; Leonidas Lotos; Christina Beta; Asimina Katsiani; Thierry Candresse; Varvara I. Maliogka

During their lifetime, perennial woody plants are expected to face multiple infection events. Furthermore, multiple genotypes of individual virus species may co-infect the same host. This may eventually lead to a situation where plants harbor complex communities of viral species/strains. Using high-throughput sequencing, we describe co-infection of sweet and sour cherry trees with diverse genomic variants of two closely related viruses, namely prunus virus F (PrVF) and cherry virus F (CVF).

Both viruses are most homologous to members of the Fabavirus genus (Secoviridae family). The comparison of CVF and PrVF RNA2 genomic sequences suggests that the two viruses may significantly differ in their expression strategy. Indeed, similar to comoviruses, the smaller genomic segment of PrVF, RNA2, may be translated in two collinear proteins while CVF likely expresses only the shorter of these two proteins. Linked with the observation that identity levels between the coat proteins of these two viruses are significantly below the family species demarcation cut-off, these findings support the idea that CVF and PrVF represent two separate Fabavirus species.

See more 

VirFree brings together participants from both academia and privatecompanies to collaborate through their expertise on the following objectives

rfree, NGS, Nanobodies, Fruit tree viruses, viroids, virus elimination ,http://www.virfree.eu ,virfree,virfree.eu , This email address is being protected from spambots. You need JavaScript enabled to view it.

Jul 11, 2018
Read 129 times
 

VirFree (H2020-MSCA-RISE-2016-Virus free fruit nurseries) © All Rights Reserved | This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 734736.