Citrus industry is worldwide dramatically affected by outbreaks of Citrus tristeza virus (CTV). Controls should be applied to nurseries, which could act as diversity hotspots for CTV. Early detection and characterization of dangerous or emerging strains of this virus greatly help to prevent outbreaks of disease. This is particularly relevant in those growing regions where no dedicated certification programs are currently in use.
Citrus vein enation virus (CVEV) was described in Spain and then it has been reported in several citrus growing areas of Asia, America and Australia. Here, the occurrence of CVEV in Italy has been documented for the first time. The full genome sequence of a CVEV Italian isolate (14Q) was determined by high-throughput sequencing and the presence of the virus was confirmed by RT-PCR and graft-transmission to indicator plants, from which the virus was recovered six-months post-inoculation.
Citrus concave gum-associated virus (CCGaV) is a negative-stranded RNA virus, first reported a few years ago in citrus trees from Italy. It has been reported in apple trees in the USA and in Brazil, suggesting a wider host range and geographic distribution. Here, an anti-CCGaV polyclonal antiserum to specifically detect the virus has been developed and used in a standard double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) that has been validated as a sensitive and reliable method to detect this virus both in citrus and apple trees. In contrast, when the same antiserum was used in direct tissue-blot immunoassay, CCGaV was efficiently detected in citrus but not in apple.
Watermelon crinkle leaf-associated virus 1 and watermelon crinkle leaf-associated virus 2 (WCLaV-1 and WCLaV-2), two unclassified members of the order Bunyavirales, are phylogenetically related to members of the genus Coguvirus (family Phenuiviridae). The genome of both viruses was reported previously to be composed of three RNA segments.
Pomegranate is an important crop in the Mediterranean Basin that can be affected by a range of pathogens. With the aim to better understand the impact of viral diseases on pomegranate, two leaf samples from Turkey showing virus-like symptoms such as chlorotic spots and oak-leaf patterns were subjected to high throughput sequencing (HTS).
The use of high throughput sequencing (HTS) for the analysis of Spanish olive trees showing leaf yellowing discoloration, defoliation, and/or decline has provided new insights into the olive viruses present in Spain and has opened discussions about the pros and cons of these technologies for diagnostic purposes
Loquat (Eriobotrya japonica) is an important crop in Spain. To date, only one viral species, apple stem pitting virus (ASPV), has been detected in Spanish loquat orchards.
Grapevine virus H (GVH) is a member of the genus Vitivirus in the family Betaflexiviridae (subfamily Trivirinae, order Tymovirales) that infects grapevine (Candresse et al., 2018). GVH was first identified in a symptomless grapevine of an unknown cultivar from Portugal in 2018 (Candresse et al. 2018), and since then the virus has been reported only from California (Diaz‑Lara et al. 2019).
Several vitiviruses have been detected in Greek vineyards (Avgelis and Roubos 2000; Dovas and Katis 2003a; 2003b; Panailidou et al. 2019; Lotos et al. 2020), but no information was available on the presence of GVH.
Grapevine (Vitis vinifera) is one of the most ancient crops cultivated worldwide for the production of both fresh grapes and wine, which represents an important source of income for many countries. Europe is the leading global wine producer, with about 50% of the world’s vine-growing area, with 3.3 million ha (Food and Agriculture Organization of the United Nations Statistics Division, FAOSTAT, 2018). Grapevine can be affected by virus and virus-like diseases that may significantly reduce the productive life of the plants as well as the grape production in terms of the quantity and quality of the berries [1]. In fact, the grapevine has been described as the crop that hosts the largest number of plant viruses, with more than 85 viral species known to infect this important crop to date [2,3].
Grapevine (Vitis vinifera) is one of the most ancient crops cultivated worldwide for the production of both fresh grapes and wine, which represents an important source of income for many countries. Europe is the leading global wine producer, with about 50% of the world’s vine-growing area, with 3.3 million ha (Food and Agriculture Organization of the United Nations Statistics Division, FAOSTAT, 2018). Grapevine can be affected by virus and virus-like diseases that may significantly reduce the productive life of the plants as well as the grape production in terms of the quantity and quality of the berries [1]. In fact, the grapevine has been described as the crop that hosts the largest number of plant viruses, with more than 85 viral species known to infect this important crop to date [2,3].
The number of viruses identified in sweet cherry has been constantly increasing over the last few years, following the broad application of high-throughput sequencing (HTS). Some of these were reported to cause leaf symptoms and yield reduction.
Grapevine Roditis leaf discoloration-associated virus (GRLDaV) is an emerging grapevine pathogen included in the European and Mediterranean Plant Protection Organization (EPPO) alert list due to its ability to damage grapevine crops and cause production losses. This work aimed to develop a specific and reliable diagnostic tool that would contribute to preventing the spread of this pathogen. Therefore, a TaqMan real-time quantitative PCR was developed. The method was validated according to EPPO guidelines showing a high degree of analytical sensitivity, analytical specificity, selectivity, and repeatability and reproducibility.
The sensitivity of this method is much higher than the sensitivity reached by previously reported methods even when tested in crude extracts, which could allow rapid testing by avoiding nucleic acid extraction steps. The method was also able to detect GRLDaV isolates from all the geographic origins reported so far, despite their high degree of genetic diversity. In addition, this new technique has been successfully applied for the quantitative detection of GRLDaV in plant material and two mealybug species, Planococcus citri and Pseudococcus viburni. In conclusion, the methodology developed herein represents a significant contribution to the diagnosis and control of this emerging pathogen in grapevine.
The number of viruses identified in sweet cherry has been constantly increasing over the last few years, following the broad application of high throughput sequencing (HTS). Some of these were reported to cause leaf symptoms and yield reduction. In 2009-2013, surveys were performed on sweet cherry orchards located in Northern Greece for the presence of Betaflexiviridae viruses using generic and specific molecular assays (Foissac et al., 2005).
P. Panailidou, L. Lotos, Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; A. Olmos, A.B. Ruiz-Garcia, F. Moran, Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain; C.G. Orfanidou, C-L. Sassalou, N.I. Katis and V.I. Maliogka, Laboratory of Plant Pathology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
Santiago, Chile, April 9-12, 2
It is a great pleasure for me to invite you to the 19th Conference of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), to be held in Santiago of Chile, on 9-12 of April, 2018. Its venue will be Santa Carolina Winery warehouse. We feel honored to host this meeting for the first time in South America, and hope that you will enjoy your staying in our beautiful city, and make of this meeting an excellent opportunity for presenting your research and establish networks.
Introduction: Perennial crops, such as fruit trees, are infected by many viruses, which are transmitted through vegetative propagation and grafting of infected plant material. Some of these pathogens cause severe crop losses and often reduce the productive life of the orchards. Detection and characterization of these agents in fruit trees is challenging, however, during the last years, the wide application of high-throughput sequencing (HTS) technologies has significantly facilitated this task. In this review, we present recent advances in the discovery, detection, and characterization of fruit tree viruses and virus-like agents accomplished by HTS approaches. A high number of new viruses have been described in the last 5 years, some of them exhibiting novel genomic features that have led to the proposal of the creation of new genera, and the revision of the current virus taxonomy status. Interestingly, several of the newly identified viruses belong to virus genera previously unknown to infect fruit tree species (e.g., Fabavirus, Luteovirus) a fact that challenges our perspective of plant viruses in general. Finally, applied methodologies, including the use of different molecules as templates, as well as advantages and disadvantages and future directions of HTS in fruit tree virology are discussed
VirFree (H2020-MSCA-RISE-2016-Virus free fruit nurseries) © All Rights Reserved | This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 734736.